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We study ray dynamics in a square billiard that allows mode conversion and is parametrized byk, the ratio
of the velocities of the two modes. Atk→11, conversion occurs at every reflection and periodic orbits
proliferate exponentially. Ask increases beyondA2, the collection of daughter rays explore only three mo-
mentum directions and mode conversion is progressively inhibited. We provide an algorithm for determining
periodic orbits whenk.A2 and show numerically that exponential proliferation persists aroundk.A2 but as
k increases, a crossover to subexponential behavior occurs for short periods. We discuss these results in the
light of conservation laws.@S1063-651X~96!07908-1#

PACS number~s!: 05.45.1b, 03.65.Sq

I. INTRODUCTION

Billiards are useful examples of dynamical systems and
display the wide variety of phenomena associated with
Hamiltonian flows. The ray equations commonly considered
follow from a short wavelength expansion of the Schro¨-
dinger equation with Dirichlet~or Neumann! boundary con-
ditions. A particle thus moves freely between collisions at
the boundary where it suffers specular reflection and one can
observe regular or chaotic motion depending on the shape of
the boundary. As an example, a square billiard generates
regular dynamics that is restricted to a torus in phase space
due to the existence of two well behaved constants of mo-
tion. In contrast, generic trajectories in the stadium shaped
billiard explore the entire constant energy surface and hence
the system is ergodic. Moreover, orbits that are nearby ini-
tially move exponentially apart with time and hence the sys-
tem is said to be metrically chaotic.

These differences also show up in the proliferation rates
of periodic solutions. In case of regular motion, periodic or-
bits exist in one-parameter families and their number in-
creases quadratically with time period. In contrast, chaotic
dynamics is accompanied by an exponential proliferation of
periodic orbits, a phenomenon referred to as topological
chaos.

The manner in which periodic orbits organize themselves
in closed systems is strongly linked to the existence of sum
rules arising from conservation laws. For example, the fact
that a particle never escapes implies that for chaotic systems
@1,2#
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where the summation over p refers to all primitive periodic
orbits,Tp is time period,Jp is the stability matrix evaluated
on the orbit and the symbol^.& denotes the average value of
the expression on the left. Since the periodic orbits are un-

stable and isolated,udet(12Jp
r)u.elprTp, wherelp is the

Lyapunov exponent of the orbit. The exponential prolifera-
tion of orbits is thus implicit in Eq.~1!.

For the square billiard though, the appropriate sum rule is
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wherev is the velocity,TM ,N is the time period of a periodic
orbit with winding numbers~M,N!, andA is the area of the
billiard. The quadratic law for the number of periodic orbits
having time period less thanT is thus contained in Eq.~2!.

In both cases, the stability of periodic orbits leads to the
respective proliferation laws. However, there can exist situ-
ations where rays split up at the boundaries of billiards and
thus suffer a decay in intensity. The basic conservation law
then demands that periodic orbits should proliferate faster
than usual to compensate this loss.

Here we explore the case of a square billiard that admits
ray splitting and is parametrized byk, the ratio of velocities
of the two modes. Fork→11, mode conversion occurs at
every reflection from the boundary and daughter rays multi-
ply as 2k wherek denotes the number of reflections. More-
over, the collection of daughter rays~from a single parent!
can access an increasing number of momenta directions with
time. Ask increases, the range of angle in which conversion
can occur at adjacent edges decreases and consequently the
average number of daughter rays produced with every reflec-
tion decreases. Fork>A2, the possibility of mode conver-
sion is restricted further and daughter rays can access only
three momentum directions. Simultaneously, the range of
angles at which mode conversion can occur shrinks ask
increases beyondkc5A2. In the limitk→` conversions are
not allowed and the system is then a normal billiard without
ray splitting.

In the setting described above, we study the proliferation
law of periodic paths. In particular, we explore the region
k>A2 and provide an algorithm for determining periodic
paths. We find that fork51.429(.kc), the proliferation law
remains exponential but ask increases further, mode conver-
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sion is inhibited and the proliferation law shows a crossover
to subexponential behavior for short periods.

Before discussing these in detail, it is important to note
that periodic orbits form the skeleton on which modern semi-
classics is built@4# and are used to understand the spectrum
in quantum systems. In elastodynamics where mode conver-
sion does occur, studies of the statistical properties of the
resonance spectrum are influenced to a large extent by these
considerations@5,6#. In fact, a Fourier transform of the reso-
nance spectrum provides evidence of the role of periodic
orbits in elastodynamics@5#. The present study is thus sig-
nificant in that it provides the first systematic computation of
periodic orbits and underscores its complex organization
even in simple geometries.

In the following section, we describe in more detail the
system that we study and analyze the dynamics of the con-
verted rays. Section III deals with the algorithm for deter-
mining periodic orbits and our numerical results are dis-
cussed in Sec. IV.

II. A SIMPLE RAY-SPLITTING SYSTEM

Ray splitting is a common phenomenon in geometrical
optics and can be observed in several other situations@7–9#.
The propagation of elastomechanical waves in solids is an
example that is of much current interest@5,6# and we study
here the short wavelength limit of this problem for the iso-
tropic case in two dimensions. For small displacements, the
wave motion is governed by the Navier equation@10#

m¹2u1~l1m!¹¹•u5r]2u/]t2, ~3!

where u is the displacement,l and m are the two Lame´
constants@11#, andr is the density. It is common to express
the displacement as a sum of two parts generated, respec-
tively, by a scalar and a vector potential (u5u11u2 where
u15¹f and u25¹3B) so that Eq.~3! separates into two
second-order equations@10#
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wherecP
25(l12m)/r andcS

25m/r. The medium thus has
two natural velocities,cP andcS where the subscriptsP and
S refer to the pressure~longitudinal! and shear~transverse!
waves, respectively. The two waves interact only at the
boundaries where they may suffer mode conversion.

Consider, for example, anS or a P wave incident on a
planar stress-free~tractionless! boundary. The reflected part
consists in general of both anS and aP wave and the re-
flection law involving anS and aP wave is given by Snell’s
relation @10#

cos~uP!5kcos~uS!, ~6!

where the angles are measured with respect to the tangent at
the collision point on the boundary andk5cP /cS . When the
reflected and incident wave belong to the same type~both
S or both P), the angle of reflection equals the angle of

incidence. Note that Eq.~6! implies the existence of a critical
angleuC5cos21(1/k). ForuS,uC , no conversion can occur
and the wave suffers only a specular reflection.

The incident and reflected amplitudes are also determined
by the boundary conditions. ForS→S1P process, and for
the case where theS wave polarization lies in the plane of
incidence, the intensities carried away by the reflectedS and
P wave are@10#

I SS5U sin~2uS!sin~2uP!2k2cos2~2uS!

sin~2uS!sin~2uP!1k2cos2~2uS!
U2 ~7!

and I SP512I SS, respectively. Similarly, for theP→S1P
process,I PP5I SS and I SP5I PS provided again that theS
wave polarization lies in the plane of incidence. In general,
the full three-dimensional problem requires a decomposition
of the polarization vector into components normal and par-
allel to the plane of incidence. The component in the plane
undergoes the process described above while the normal
component suffers no conversion.

The small-wavelength limit of this wave motion restricted
to a plane can be treated as the relevant ray-tracing problem
in two-dimensions. The geometry we consider here is a
square billiard of lengthL5p/2. In a situation where no
mode conversion occurs, the square billiard is integrable and
its periodic orbits increase quadratically with length. The
corresponding Schro¨dinger equation can be solved easily and
the quantum spectrum is described exactly by periodic orbits.
The situation in elasdodynamics is, however, quite the oppo-
site and the only resonances known analytically form a small
fraction of the total number@10#. To the best of our knowl-
edge, the ray-tracing problem in this geometry has not been
studied before and we proceed to understand that now.

The parameter range that is physically accessible is
k.1 and as an example we study the casek51.429. Figure
1 illustrates the conversions that can occur in this system.
For the sake of visualization, it is convenient to consider an
unfolded trajectory in the full plane generated by reflections
of the fundamental domain about its sides~see Fig. 2!. A
reflected trajectory without conversion thus continues
through the boundary without any change in angle while a
ray that has suffered conversion is equivalent to a refracted

FIG. 1. The map shows the relationship between the angles of
theSandP ray on conversion atk51.429. All angles are measured
with respect to the X axis; i.e., horizontal edge. Notational details
can be found in the text.

54 1233PERIODIC ORBITS IN A SIMPLE RAY-SPLITTING SYSTEM



ray that undergoes a change in angle. A cell identical to the
fundamental domain can then be labeled by the winding
numbers (M ,N) where 2ML is the displacement of any
point in the cell along the X axis and 2NL along the Y axis.
Figure 2 shows the cells with winding numbers~1,1! and
~2,2!.

Consider then a family ofS rays at an angleu1 with
respect to the horizontal edge~X axis, see Fig. 2!. For
u1,p/22uC , conversion to aP ray can occur only at the
vertical edge~Y axis, see Fig. 2!. TheP ray at an angleu2
~measured from the X axis!, can, however, reconvert to an
S ray at both the vertical and the horizontal edges. If it re-
converts at the vertical edge, the resultant reflectedS ray is
again at an angleu1 while if reconversion occurs at the hori-
zontal edge, theS ray ~which we denote byS8) is at an angle
u3.u1 ~see Fig. 1!. The first possibility requires no further
analysis while for theS ray at an angleu3, reconversion can
occur only at the horizontal edge and hence generates aP
ray at angleu2. An identical process occurs ifu1.uC except
that edges are now interchanged. Forp/22uC,u1,uc ~see
Fig. 1! and foru150 or p/2, there is no conversion and the
orbit continues with the same intensity. This exhausts all
possibilities so that there are only three directions
$u1 ,u2 ,u3% that all rays originating from a given parent ray
can explore.

As k increases, the two branches in the map of Fig. 1
move apart and the range of angles at which conversion can
occur at either the vertical or horizontal edge shrinks. How-
ever, the scenario described above continues to hold when-
ever conversion does occur and the daughter rays produced
explore only three momenta directions.

As k decreases however, the branches in the map~of Fig.
1! come closer and meet atkc5A2. As k decreases below
kc , there is a range of angles in which conversion occurs
both at the horizontal and vertical edge as shown in Fig. 3.
Consequently, the number of directions accessible to all
daughter rays from a single parent increases as well. Ask
decreases further, the overlap increases and atk→11, con-
version can occur at both the horizontal and vertical edge for
any initial angle. Thus rays split with every reflection and the
number of daughter rays grows as 2k wherek denotes the
number of reflections. The collection of all daughter rays

now explore an increasing number of momentum directions
in sharp contrast to the case whenk.kc .

Note that in all cases, the orbits are marginally unstable as
in the case when no conversion occurs. This can be verified
by linearizing the neighborhood and looking at the eigenval-
ues of the Jacobian matrix. Periodic rays thus occur in fami-
lies and their extent is limited by the vertices where adjacent
parallel rays meet a horizontal and a vertical edge, respec-
tively, and convert differently.

III. PERIODIC ORBITS

We now turn to a study of periodic orbits in such a system
and provide an algorithm for determining them when
k.kc . We first note that unlike a normal square billiard,
each set of winding numbers (M ,N) can correspond to more
than one periodic solution. The total length,l S , of all S
segments~at angleu1) in a periodic trajectory is such that
l Scos(u1)5m1L, wherem1 is an integer andL is the size of
the square. Similarly, the total length,l S8 of S8 segments in a
periodic trajectory is such thatl S8sin(u3)5n1L wheren1 is
again an integer. It follows then that the total length,l P of all
P segments in a trajectory with winding numbers (M ,N) is
such that

l Pcos~u2!5@~2M2m1!L2n1Lcot~u3!#. ~8!

On equating the total projected length of the trajectory along
the vertical edge@ l Ssin(u1)1lPsin(u2)1lS8sin(u3)# to 2NL we
obtain

m1tan~u1!1@~2M2m1!2n1cot~u3!#tan~u2!5~2N2n1!,
~9!

wherem1 can vary from 0 to 2M while n1 can vary from 0
to 2N. Note thatu2 and u3 can be expressed in terms of
u1 so that for a given value of (m1 ,n1), the root of Eq.~9! ~if
any! can be determined. However not all (m1 ,n1) admit real
solution though in general any set of winding numbers,
(M ,N) allows more than one periodic orbit. The case
m152M ,n150 corresponds to a normal periodic orbit that
suffers no conversion.

FIG. 2. Two unfolded periodic orbits belonging to the same
family with winding number ~2,2! and symbol itinerary
(S8,P,S,P8). Note the small segments ofP ray betweenS8 and
P as well asS andP8.

FIG. 3. The map shows the conversions possible atk51.05.
The anglesuS anduP denote, respectively, the angles of theS and
P ray measured with respect to theX axis ~horizontal edge!. Note
that there is a range of angles where conversion can occur at both
the horizontal and vertical edges. This is referred to as anoverlap.
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The total length of allS ray segments in any trajectory
with winding numbers (M ,N) and labeled by (m1 ,n1) is
l S1 l S85Lm1 /cos(u1)1Ln1 /sin(u3) while the length ofP ray
segments put together isl P5@2M2m12n1cot(u3)#L/cos
(u2). The time period of the trajectory is thus
( l S1 l S8)/cS1 l P /cP .

Clearly, theseS, S8 andP segments can be arranged in
several ways so that an orbit with a given (M ,N,m1 ,n1) will
in general be degenerate. In order to compute the degen-
eracy, it is necessary to construct symbol itineraries that are
not related by cyclic permutation. It turns out that four dis-
tinct symbols,S,S8,P,P8 together with the winding numbers
(M ,N) specify a trajectory. HereS(P) andS8(P8) refer to a
single stretch ofS(P) ray between two consecutive vertical
and horizontal edges, respectively,~see Fig. 2! though it
must be noted thatP andP8 have the same angleu2 where
asS andS8 are at anglesu1 andu3, respectively. Also, the
total length of allP segments is in general not equal to
m2L/cos(u2)1n2L/sin(u2) wherem2 andn2 are integers that
count the number ofP andP8 segments, respectively. This
is due to the fact that there exist small segments ofP ray
joining adjacent vertical and horizontal edges.

Consider for example the case with (m1 ,n1 ,m2 ,n2)
5 ~1,1,1,1! @12#. There are six distinct itin-
eraries: (S,S8,P,P8), (S,S8,P8,P), (S,P,S8,P8),
(S,P,P8,S8), (S,P8,S8,P), (S,P8,P,S8), and some of these
correspond to periodic trajectories with winding numbers,
(M ,N)5(2,2) @13# . It is implicit, however, that small seg-
ments of P rays joining adjacent vertical and horizontal
edges exist, whenever the following two symbols occur
consecutively in an itinerary: (S,S8),(S8,P),(S,P8) or
(P,P8). Figure 2 illustrates this for (S8,P,S,P8) with
(M ,N)5(2,2).

Finally it is important to remark that the above symbols
do not specify a trajectory uniquely and it is possible that
more than one itinerary corresponds to the same orbit. This
occurs when the total length of a singleP segment in a
trajectory is such that it hits at least two vertical and also two
horizontal edges.

For k,kc , the analysis gets increasingly complicated
though ask→11, all daughter rays born out of a parent
periodic orbit at an angleu15tan21(N/M ) are eventually
periodic with the same length~for cS5cP51, the time pe-
riod equals the length!. The degeneracy is thus 22(M1N) so
that the density of orbit lengths can be expressed as

d~ l !5(
M

(
N

d~ l22LAM21N2!e2~M1N! ln2. ~10!

The average proliferation rate can thus be obtained by inte-
grating overM andN as

dav~ l !5E dME dNd~ l22LAM21N2!e2~M1N!ln2 ~11!

5E
0

p/2

duE dr
r

4L2
d~ l2r !erA2ln2cos~u2p/4!/L,

~12!

where 2LM5rcos(u) and 2LN5rsin(u). The r integration
is trivial and theu integration can be evaluated asymptoti-
cally for large l using the Laplace method@14#. We finally
obtain

dav~ l !5
l

4L2 S p

2hl D
1/2

ehl, ~13!

where the growth exponenth5(A2/L)ln 2. For L5p/4,
h51.248.

As k→`, no conversion is allowed and the average den-
sity of periodic orbits is then

dav~ l !5
2p l

16L2
. ~14!

With this background, we now present some numerical re-
sults on the proliferation rate of periodic orbits fork.kc .

IV. NUMERICAL RESULTS

We first consider the case,k51.429 and choosecS51
and cP5k. Using the procedure outlined above, we have
generated all periodic orbits that have time periods less than
7.5. We then construct the staircase function
N(T)5( iQ(T2Ti) which counts the number of periodic
orbits with Ti<T. Figure 4 shows a plot of lnN(T) as a
function ofT together with the best fitting straight line. The
fit is good indicating an exponential proliferation of periodic
orbits. The slope, which is a measure of the growth rate,
equals 1.509.

Note that a direct comparison with the growth rate at
k→11 ~obtained in Sec. III! is not possible due to the fact
that the velocities atk51.429 are necessarily different. As-
suming that all conversions are allowed, the mean velocity
required to achieve a growth rate of 1.5 is about 1.2.

We next consider the cases whenk equals 8 and 30 and
choosecS51/k andcP51. The range of angles which per-
mit conversion atk58 is now much smaller and a large
fraction of periodic orbits do not undergo any conversion for
the time periods considered. The proliferation rate is thus
subexponential~for a plot, see Fig. 5!.

For k530, conversion is further inhibited as the range of

FIG. 4. A plot of lnN(T) as a function ofT together with the
best fitting straight line. HereN(T) counts the number of periodic
orbits that suffer conversion and have periods less than or equal to
T. The growth exponent as derived from the slope is 1.509.
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angles ~in which conversion is allowed! becomes smaller
still. This is evident in Fig. 5 where we plot lnN(T) as a
function of lnT for k58 and 30. The curve fork530 has a
good linear fit with slope 2.22 indicating a power law behav-
ior ~note that the exponent is expected to be 2 in the limit
k→`). The curve fork58 follows this until lnT.2 and
then increases as more converted orbits are included.

This substantiates our analysis and shows that with a de-
crease in the average number of conversions ask increases,
the proliferation law for short periods shows a crossover
from exponential to power law behavior. However for large
but finitek, exponential proliferation is eventually expected
to dominate for largeT though these orbits are not easily
accessible to computations.

V. DISCUSSIONS AND CONCLUSIONS

We have, in the preceding sections, analyzed a simple
ray-splitting system and shown that as the parameterk in-
creases from 11, mode conversion is progressively inhibited

and does not take place with every reflection at the boundary.
This shows up in the proliferation law of periodic orbits as
well. Surprisingly, exponential proliferation persists for
k.A2 where the number of directions accessible to the
daughter rays is only three. For short periods, there is a
crossover to subexponential proliferation with increasingk
since conversion can occur in a progressively shrinking
range of angles that are~nearly! parallel to the two edges and
converted periodic orbits are thus longer on an average.

In terms of conservation laws, the decay in intensity that
accompanies splitting must be compensated by a faster pro-
liferation of periodic orbits, though not necessarily of the
exponential kind. The sum rule for ray splitting, however,
needs to be derived in order to be more specific, though
heuristically, its form should be similar to Eq.~2! with each
term having an additional factor representing the intensity
loss. This is an important area to explore for sum rules can
be put to practical use, for example, in checking whether all
periodic orbits up to a certain length have been determined.

Our computations were limited by the fact that a set of
four symbols together with the winding numbers were nec-
essary to label periodic orbits. We have, in each case in-
cluded all periodic orbits with symbols strings of length 10
and the periodT up to which all periodic orbits are available
is decided by the shortest orbit with symbol string of length
greater than 10. For boundary shapes leading to hyperbolic-
ity, the complexities increase making longer orbits practi-
cally inaccessible to computations. Thus, even though our
results for larger values ofk are limited to short orbits, they
are significant in this light.
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FIG. 5. The proliferation law fork58 ~upper curve! and
k530 ~lower curve!. Note that we plot lnN(T) as a function of
lnT. Also shown is the best fitting straight line fork530.
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