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Periodic orbits in a simple ray-splitting system
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We study ray dynamics in a square billiard that allows mode conversion and is parametrizethbyratio
of the velocities of the two modes. At—1*, conversion occurs at every reflection and periodic orbits
proliferate exponentially. Ax increases beyong2, the collection of daughter rays explore only three mo-
mentum directions and mode conversion is progressively inhibited. We provide an algorithm for determining
periodic orbits when<>+2 and show numerically that exponential proliferation persists arasag2 but as
K increases, a crossover to subexponential behavior occurs for short periods. We discuss these results in the
light of conservation lawd.S1063-651X96)07908-1

PACS numbdss): 05.45:+b, 03.65.Sq

. INTRODUCTION stable and isolateddet(1—J,")|=e»"Te, where\, is the
Lyapunov exponent of the orbit. The exponential prolifera-
Billiards are useful examples of dynamical systems andion of orbits is thus implicit in Eq(1).
display the wide variety of phenomena associated with For the square billiard though, the appropriate sum rule is
Hamiltonian flows. The ray equations commonly considered?2 3]
follow from a short wavelength expansion of the Sehro
dinger equation with Dirichletor Neumani boundary con-
ditions. A particle thus moves freely between collisions at 2 1 4AS(t—Tun) _
the boundary where it suffers specular reflection and one can M N (72 vaM,N
observe regular or chaotic motion depending on the shape of
the boundary. As an example, a square billiard generates
regular dynamics that is restricted to a torus in phase spacdéherev is the velocity,Ty y is the time period of a periodic
due to the existence of two well behaved constants of moorbit with winding numbergM,N), andA is the area of the
tion. In contrast, generic trajectories in the stadium shape@illiard. The quadratic law for the number of periodic orbits
billiard explore the entire constant energy surface and hendeaving time period less thah is thus contained in Eq2).
the system is ergodic. Moreover, orbits that are nearby ini- In both cases, the stability of periodic orbits leads to the
tially move exponentially apart with time and hence the sysrespective proliferation laws. However, there can exist situ-
tem is said to be metrically chaotic. ations where rays split up at the boundaries of billiards and
These differences also show up in the proliferation ratedhus suffer a decay in intensity. The basic conservation law
of periodic solutions. In case of regular motion, periodic or-then demands that periodic orbits should proliferate faster
bits exist in one-parameter families and their number inihan usual to compensate this loss.
creases quadratically with time period. In contrast, chaotic Here we explore the case of a square billiard that admits
dynamics is accompanied by an exponential proliferation ofay splitting and is parametrized by the ratio of velocities
periodic orbits, a phenomenon referred to as topologicapf the two modes. Fok— 1", mode conversion occurs at
chaos. every reflection from the boundary and daughter rays multi-
The manner in which periodic orbits organize themselvedly as  wherek denotes the number of reflections. More-
in closed systems is strongly linked to the existence of sungver, the collection of daughter rayfom a single parent
rules arising from conservation laws. For example, the facgan access an increasing number of momenta directions with
that a particle never escapes implies that for chaotic systeniéne. As« increases, the range of angle in which conversion
[1,2] can occur at adjacent edges decreases and consequently the
average number of daughter rays produced with every reflec-
tion decreases. Fot=2, the possibility of mode conver-
[de(1—J,")] — () sion is restricted further and daughter rays can access only
three momentum directions. Simultaneously, the range of
where the summation over p refers to all primitive periodicangles at which mode conversion can occur shrinkscas
orbits, T, is time period,J, is the stability matrix evaluated increases beyond,= \/5 In the limit k—cc conversions are
on the orbit and the symbél) denotes the average value of not allowed and the system is then a normal billiard without
the expression on the left. Since the periodic orbits are unray splitting.
In the setting described above, we study the proliferation
law of periodic paths. In particular, we explore the region
“On leave from Theoretical Physics Division, Bhabha Atomic Re-x=+/2 and provide an algorithm for determining periodic
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sion is inhibited and the proliferation law shows a crossover 9 . ‘ ' . . . .
to subexponential behavior for short periods. ) }
. . . el e . 80 - conversion at vertical B
Before discussing these in detail, it is important to note

that periodic orbits form the skeleton on which modern semi- 0 i
classics is builf4] and are used to understand the spectrum 60 - 7
in quantum systems. In elastodynamics where mode conver- 50 | .

. . . . 02 (P ray)
sion does occur, studies of the statistical properties of the 10 b 4
resonance spectrum are influenced to a large extent by these 30 | i
consideration$5,6]. In fact, a Fourier transform of the reso- 50 L i
nance spectrum provides evidence of the role of periodic o e
orbits in elastodynamick5]. The present study is thus sig- 0 conversion st horizontz

.pe . . . . . . 0 1 L l 1 1 ] 1 1
mﬁgan_t in that it provides the first systematic computation _of 0 10 20 30 40 5 60 70 8 9
periodic orbits and underscores its complex organization 01,3 (S ray)

even in simple geometries. _ _

In the following section, we describe in more detail the FIG. 1. The map shows the relationship between the angles of
system that we study and analyze the dynamics of the cofbe SandP ray on conversion at=1.429. All angles are measured
verted rays. Section Ill deals with the algorithm for deter-With respect to the X axis; i.e., horizontal edge. Notational details
mining periodic orbits and our numerical results are dis-a" Pe found in the text.

cussed in Sec. IV. o o ) .
incidence. Note that E() implies the existence of a critical

anglefdc=cos Y(1/x). For §s< 6, no conversion can occur
and the wave suffers only a specular reflection.

Ray splitting is a common phenomenon in geometrical The incident and reflected amplitudes are also determined
optics and can be observed in several other situafion9). by the boundary conditions. F&— S+ P process, and for
The propagation of elastomechanical waves in solids is athe case where th8 wave polarization lies in the plane of
example that is of much current inter¢5t6] and we study incidence, the intensities carried away by the refleGedhd
here the short wavelength limit of this problem for the iso-P wave arg/10]
tropic case in two dimensions. For small displacements, the
wave motion is governed by the Navier equatjdg] Sin(26)sin(260p) — k?cog(26s) |

SS7| sin(26s)siN(26p) + k2coS(2 6s)

II. A SIMPLE RAY-SPLITTING SYSTEM

2 e 9201 912 ™
uVau+ N+ w)VV-u=pad-ulits, (3

where u is the displacementy and . are the two Lame andlsp=1—Igs, respectively. Similarly, for thé®—S+P
constantg11], andp is the density. It is common to express process,|pp=1Igg and I sp=1pg provided again that th&

the displacement as a sum of two parts generated, respegave polarization lies in the plane of incidence. In general,
tively, by a scalar and a vector potential<€u,+u, where the full three-dimensional problem requires a decomposition
u;=V¢ andu,=VXB) so that Eq.(3) separates into two of the polarization vector into components normal and par-
second-order equatiof40] allel to the plane of incidence. The component in the plane
undergoes the process described above while the normal
component suffers no conversion.

The small-wavelength limit of this wave motion restricted
to a plane can be treated as the relevant ray-tracing problem
) 1, 5 in two-dimensions. The geometry we consider here is a

VB= "B/t (5 square billiard of lengtiL==/2. In a situation where no
S mode conversion occurs, the square billiard is integrable and

wherec2= (A +2u)/p andc3=u/p. The medium thus has tS periodic orbits increase quadratically with length. The
two natural velocitiesgp andcs where the subscrip8 and corresponding Schdinger equation can be solved easily and

S refer to the pressuréongitudina) and sheaftransversg the quantum spectrum is described exactly by periodic orbits.

waves, respectively. The two waves interact only at thel he situation in elasdodynamics is, however, quite the oppo-

boundaries where they may suffer mode conversion. site and the only resonances known analytically form a small
Consider, for example, a8 or a P wave incident on a fraction of the total numbell10]. To the best of our knowl-

planar stress-fre@ractionlesy boundary. The reflected part edge_, the ray-tracing problem in this geometry has not been
consists in general of both & and aP wave and the re- studied before and we proceed to understand that now.

flection law involving anS and aP wave is given by Snell's The parameter range that is physically accegsible s
relation[10] x>1 and as an example we study the casel.429. Figure

1 illustrates the conversions that can occur in this system.
cog 0p) = kCog bg), (6) For the sake of visualization, it is convenient to consider an
unfolded trajectory in the full plane generated by reflections
where the angles are measured with respect to the tangentait the fundamental domain about its sidege Fig. 2 A
the collision point on the boundary ard=cp/c5. Whenthe reflected trajectory without conversion thus continues
reflected and incident wave belong to the same fijmth  through the boundary without any change in angle while a
S or both P), the angle of reflection equals the angle ofray that has suffered conversion is equivalent to a refracted

1
V2= C—2a2¢/at2, (4)
P
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FIG. 3. The map shows the conversions possibleatl.05.

FIG. 2. Two unfolded periodic orbits belonging to the same The angleds and 6 denote, respectively, the angles of Band
family with winding number (2,20 and symbol itinerary P ray measured with respect to tieaxis (horizontal edge Note
(S',P,S,P’). Note the small segments & ray betweenS’ and  that there is a range of angles where conversion can occur at both
P as well asS andP’. the horizontal and vertical edges. This is referred to as\amlap

ray that undergoes a change in angle. A cell identical to th
fundamental domain can then be labeled by the windin
numbers M,N) where ML is the displacement of any
point in the cell along the X axis and\L along the Y axis.
Figure 2 shows the cells with winding numbeis1) and
(2,2.

Consider then a family of5 rays at an angle&d; with
respect to the horizontal edg&X axis, see Fig. 2 For
0,<l2— 6., conversion to & ray can occur only at the
vertical edge(Y axis, see Fig. 2 The P ray at an angl&,
(measured from the X aXiscan, however, reconvert to an
S ray at both the vertical and the horizontal edges. If it re-

converts at the vertical edge, the resultant refleGedy is We now turn to a study of periodic orbits in such a system
again at an anglé; while if reconversion occurs at the hori- ang provide an algorithm for determining them when
zontal edge, th& ray (which we denote by’) is atan angle .~ .. We first note that unlike a normal square billiard,
03> 01 (See Flg ;L The first pOSSlblllty requires no further each set of W|nd|ng numberNI(,N) can Correspond to more
analysis while for thes ray at an angl@s, reconversion can  than one periodic solution. The total length, of all S
occur only at the horizontal edge and hence generates a segmentgat angled,) in a periodic trajectory is such that
ray at angle,. An identical process occurs #h,> 6c except | cos()=myL, wherem, is an integer and. is the size of
that edges are now interchanged. fd2— 6c< 6, < 0 (S€€  the square. Similarly, the total lengily of S’ segments in a
Fig. 1) and for8,=0 or 7/2, there is no conversion and the periodic trajectory is such thdt sin(6)=n,L wheren; is
orbit continues with the same intensity. This exhausts al gain an integer. It follows then that the total lengthof all

possibilities so that there are only three directionsp segments in a trajectory with winding numbetd () is
{61,6,,05} that all rays originating from a given parent ray gych that

can explore.

As k increases, the two branches in the map of Fig. 1 | pcog 6,) =[(2M —my)L —n,Lcot( 65)]. (8)
move apart and the range of angles at which conversion can
occur at either the vertical or horizontal edge shrinks. HOW'On equating the total projected |ength of the trajectory a|0ng

ever, the sce_nario described above continues to hold whefhe vertical edgél ssin(6y) +1psin(6,) +1gsin(6s)] to 2NL we
ever conversion does occur and the daughter rays producehtain

explore only three momenta directions.

As « decreases however, the branches in the (o&pig. mytan( 6;) +[(2M —m;) —n;cot( 63) Jtan 6,) = (2N—n,),
1) come closer and meet &= 2. As « decreases below (9)
K¢, there is a range of angles in which conversion occurs
both at the horizontal and vertical edge as shown in Fig. 3wherem; can vary from 0 to 1 while n; can vary from 0
Consequently, the number of directions accessible to allo 2N. Note thatd, and 6#; can be expressed in terms of
daughter rays from a single parent increases as well« As 6, so that for a given value o, ,n,), the root of Eq(9) (if
decreases further, the overlap increases and-al*, con-  any) can be determined. However not ath{,n,) admit real
version can occur at both the horizontal and vertical edge fosolution though in general any set of winding numbers,
any initial angle. Thus rays split with every reflection and the(M,N) allows more than one periodic orbit. The case
number of daughter rays grows a% @herek denotes the m;=2M,n;=0 corresponds to a normal periodic orbit that
number of reflections. The collection of all daughter rayssuffers no conversion.

Gow explore an increasing number of momentum directions
9 sharp contrast to the case whek k..

Note that in all cases, the orbits are marginally unstable as
in the case when no conversion occurs. This can be verified
by linearizing the neighborhood and looking at the eigenval-
ues of the Jacobian matrix. Periodic rays thus occur in fami-
lies and their extent is limited by the vertices where adjacent
parallel rays meet a horizontal and a vertical edge, respec-
tively, and convert differently.

Ill. PERIODIC ORBITS
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The total length of allS ray segments in any trajectory
with winding numbers 1,N) and labeled by rf,n;) is
ls+1g=Lm,;/cos@;)+Ln,/sin(6s) while the length ofP ray
segments put together is=[2M —m;—n,cot(6s)]L/cos
(6,). The time period of the trajectory is thus
(Is+lg)/cstlplcp.

Clearly, theseS, S' and P segments can be arranged in
several ways so that an orbit with a gived (N,m,,n;) will
in general be degenerate. In order to compute the degen-
eracy, it is necessary to construct symbol itineraries that are
not related by cyclic permutation. It turns out that four dis-

In N(T)

tinct symbolsS,S',P,P’ together with the winding numbers L5 5 55 6 6.5 7 75
(M,N) specify a trajectory. Her&(P) andS'(P') refer to a T

single stretch ofS(P) ray between two consecutive vertical . .

and horizontal edgeS, respective“ﬁee F|g 2 though it FIG. 4. A plot of IlN(T) as a function ofT together with the

must be noted tha® andP’ have the same ang where bes_t fitting straight line. I—_|erBI(T) counts the number of periodic
asSandS' are at angle®, and 65, respectively. Also, the orbits that suffer conversion an_d have periods less Fhan or equal to
total length of allP segments is in general not equal to T. The growth exponent as derived from the slope is 1.509.
m,L/cos(@,)+n,L/sin(d,) wherem, andn, are integers that
count the number oP andP’ segments, respectively. This
is due to the fact that there exist small segment$ afay
joining adjacent vertical and horizontal edges.

where 2ZM=rcos@) and 2N=rsin(¢). Ther integration
is trivial and the# integration can be evaluated asymptoti-
cally for largel using the Laplace methdd4]. We finally

Consider for example the case wittm{,n;,m,,n,) obtain
= (1,1,1,2 [12]. There are six distinct itin- R
eraries: S,S’,P,P’), (S,S’,P,,P), (S,P,S,,P’), dav(l):m(m) eh|, (13)

(S,P,P’,S"), (5P',8,P), (SP',P,S"), and some of these

correspond to periodip Fraje.ct.ories with winding numbers,Wr1ere the growth exponertt=(\2/L)In2. For L= /4,
(M,N)=(2,2) [13] . It is implicit, however, that small seg- ,_1 o4g

ments of P rays joining adjacent vertical and horizontal
edges exist, whenever the following two symbols occu
consecutively in an itinerary: §S'),(S',P),(S,P’) or
(P,P"). Figure 2 illustrates this for §,P,S,P’) with 27l

(M,N)=(2,2). day(D =72 (14)

Finally it is important to remark that the above symbols
do not specify a trajectory uniquely and it is possible thatwith this background, we now present some numerical re-
more than one itinerary corresponds to the same orbit. Thigults on the proliferation rate of periodic orbits fer «. .
occurs when the total length of a singke segment in a
trajectory is such that it hits at least two vertical and also two IV. NUMERICAL RESULTS
horizontal edges.

For k<k., the analysis gets increasingly complicated We first consider the cas&=1.429 and chooseg=1
though ask—1", all daughter rays born out of a parent and cp=«. Using the procedure outlined above, we have
periodic orbit at an angl@;=tan }(N/M) are eventually generated all periodic orbits that have time periods less than
periodic with the same lengttfor cs=cp=1, the time pe- 7.5. We then construct the staircase function
riod equals the length The degeneracy is thug® N so  N(T)=Z;0(T~—T;) which counts the number of periodic
that the density of orbit lengths can be expressed as orbits with T;<T. Figure 4 shows a plot of M(T) as a

function of T together with the best fitting straight line. The
fit is good indicating an exponential proliferation of periodic
dy=> > s(1—2LMZ+N2)e2M+N 2 (1) orbits. The slope, which is a measure of the growth rate,
M N equals 1.509.
Note that a direct comparison with the growth rate at
The average proliferation rate can thus be obtained by inte’f_>1+ (obtalne_d in Sec. Illis not p055|ble_due_ to the fact
; that the velocities ak=1.429 are necessarily different. As-
grating overM andN as . . .
suming that all conversions are allowed, the mean velocity
required to achieve a growth rate of 1.5 is about 1.2.
———s We next consider the cases wherequals 8 and 30 and
dav(l):f de dNS(1—2LM?+ N%) etz (11) choosecs=1/k andcp=1. The range of angles which per-
mit conversion at«=8 is nhow much smaller and a large
- fraction of periodic orbits do not undergo any conversion for
:f” def erz5(|_r)er\fiancosb‘fwM)/L the time periods considered. The proliferation rate is thus
0 4L ’ subexponentiaffor a plot, see Fig. b
(12 For «= 30, conversion is further inhibited as the range of

As k—00, no conversion is allowed and the average den-
rsity of periodic orbits is then
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4.5 . . . . . and does not take place with every reflection at the boundary.
This shows up in the proliferation law of periodic orbits as
well. Surprisingly, exponential proliferation persists for
k=12 where the number of directions accessible to the
daughter rays is only three. For short periods, there is a
crossover to subexponential proliferation with increasing
since conversion can occur in a progressively shrinking
range of angles that afaearly) parallel to the two edges and
converted periodic orbits are thus longer on an average.

In terms of conservation laws, the decay in intensity that
accompanies splitting must be compensated by a faster pro-
1.6 1.8 2 2.2 2.4 2.6 liferation of periodic orbits, though not necessarily of the

InT exponential kind. The sum rule for ray splitting, however,
needs to be derived in order to be more specific, though
heuristically, its form should be similar to E(R) with each
term having an additional factor representing the intensity
loss. This is an important area to explore for sum rules can
angles (in which conversion is allowedbecomes smaller D€ Put to practical use, for example, in checking whether all
still. This is evident in Fig. 5 where we plotM(T) as a periodic orbits up toa certal'n !ength have been determined.
function of IAT for k=8 and 30. The curve fok =230 has a Our computations were limited by the fact that a set of

good linear fit with slope 2.22 indicating a power law behay-f0Ur Symbols together with the winding numbers were nec-

ior (note that the exponent is expected to be 2 in the limi€Ssary to Iabgl periodlic or_bits. We have,. in each case in-
x—o0). The curve fork=8 follows this until InT=2 and cluded all periodic orbits with symbols strings of length 10

then increases as more converted orbits are included. gnd th_e period’ up to which aII_ pefi"dic orbits are available
This substantiates our analysis and shows that with a de® decided by the shortest orbit with symbol. string of Iength

crease in the average number of conversions agreases, greater than 10. .F.or poundary shapes leading to .hyperboll|c-

the proliferation law for short periods shows a crossovery th_e complv_axmes Increase _maklng longer orbits practi-

from exponential to power law behavior. However for IargecaIIy inaccessible to computatlpn_s. Thus, even t.hOUQh our

but finite x, exponential proliferation is eventually expected result's fp_r 'afg‘?r vqlugs of are limited to short orbits, they

to dominate for largel though these orbits are not easily are significant in this light.

accessible to computations.

3.5
n N(T) 3

2.5

1.5

FIG. 5. The proliferation law fork=8 (upper curvg¢ and
«=230 (lower curve. Note that we plot IN(T) as a function of
InT. Also shown is the best fitting straight line far=30.
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